21. A Novel Amination Reaction with Diphenyl Phosphorazidate: Synthesis of α-Amino-Acid Derivatives

by José M. Villalgordo¹)²), Anthony Linden, and Heinz Heimgartner*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(13.X.95)

The reaction of enolates of α -unsubstituted carboxamides 3 with diphenyl phosphorazidate (DPPA) and di(*tert*-butyl) dicarbonate ('Boc anhydride') in THF at -78° yielded 2-{[(*tert*-butoxy)carbonyl]amino}carboxamides 5 (*Scheme 2*) which are derivatives of α -amino acids. In this reaction, DPPA acts as an electrophilic amination reagent. A reaction mechanism is proposed in *Scheme 3*.

1. Introduction. – Diphenyl phosphorazidate (DPPA) is well known as an azido-transfer reagent (*cf.* [1–3] and refs. cit. therein) and is, *e.g.*, often used to prepare acyl azides as activated acid derivatives in peptide syntheses. Recently, we have shown that the azido group of DPPA also substitutes the O-atom of enolates of *N*-methyl-*N*-phenylcarboxamides **1**, leading to azidoenamines which, by elimination of N₂, cyclize to give 3-amino-2*H*-azirines **2** [4] (*Scheme 1*). A different reaction occurred with enolates of α -unsubstituted carboxamides of type **3** and DPPA: α -diazocarboxamides **4** were formed as the sole product [4] (*Scheme 1*). In this case, DPPA acts as a diazo-transfer reagent.

In the present paper, a third reaction type of DPPA is described, in which it formally reacts as an amination reagent.

¹) Postdoctoral stay of J. M. V. at the University of Zurich, 1993.

²) Present address: Universitat de Girona, Departament de Química, Unitat de Química Orgánica, Plaça del Hospital 6, E-17071 Girona.

2. Results. – Solutions of enolates of α -unsubstituted N-methyl-N-phenylcarboxamides 3 in THF, prepared with lithium diisopropylamide (LDA) at -78°, were treated with DPPA (1.1 equiv.; 5 min at -78°) and then with di(*tert*-butyl) dicarbonate ('Boc-anhydride', (Boc)₂O); 2 equiv.; 6 h, -78° to room temperature). After chromatography (SiO₂), the amino-acid derivatives 5 were isolated as colorless or slightly yellow solids in 70-80% yield (*Scheme 2*). The structures of **5a-d** were elucidated by means of their spectroscopic data. In the case of **5d**, the structure was confirmed by an X-ray crystalstructure determination (*Fig. 1*).

Fig. 1. ORTEP Plot [5] with 50% probability ellipsoids of the crystal structure of 5d

A likely reaction mechanism for the formation of 5 is proposed in *Scheme 3*. The enolate A reacts as a C-nucleophile with the terminal N-atom of DPPA to give **B** (*cf.* also [4]), which, as a triazenyl anion, is trapped by the electrophilic $(Boc)_2O$ to give **C**. During workup, **C** decomposes, probably *via* fragmentation of **D**, leading to 5.

3. Discussion. – We showed that DPPA with lithium enolates of carboxamides can react either as an N_3 -, an N_2 -, or an 'NH₂'-transfer reagent (*Scheme 4*). With 2,2-disubsti-

tuted enolates E at 0°, azidoenamines 6, the precursors of 3-amino-2*H*-azirines 2, are formed. The kind of product formed in the reaction of DPPA with 2-monosubstituted enolates A depends on the reaction conditions. Whereas at 0°, α -diazoamides 4 are formed, *N*-protected α -amino-acid derivatives 5 are obtained at -78° after trapping with (Boc)₂O.

Precedents are known for all three reaction types. As mentioned in the introduction (see also [4]), the most common reaction of DPPA is the N_3 transfer with carboxylic acids to give acyl azides, which are used as activated acid derivatives in peptide syntheses and for preparing carboxamides, esters, and thioesters [1] [3a] [6] [7]. In boiling alcohols, the acyl azides undergo a *Curtius* rearrangement to give urethanes [3b], and after hydrolysis and decarboxylation, the corresponding amines are obtained [3] [8]. An N_3 transfer also occurs with alcohols in the presence of Ph₃P and diethyl azodicarboxylate (modified *Mitsunobu* reaction) [2], and in 1,3-dipolar cycloadditions [8].

In comparison with the N₃ transfer reactions, only a few examples of diazo transfer with DPPA are known. *E.g.*, diazo(trimethylsilyl)methane (7) is formed in good yield in the reaction of DPPA with the *Grignard* reagent from (chloromethyl)trimethylsilane [9] (*Scheme 5*)³). The intermediate of the reaction is a triazene derivative of type \mathbf{F}^{4})⁵).

The potential of DPPA as an 'NH₂'-transfer reagent (electrophilic amination reagent) was also shown by *Shioiri* and coworkers [12] [13]. Aromatic and heteroaromatic *Grignard* and lithium compounds in Et₂O at low temperature reacted with DPPA to give triazene derivatives **G**, which were reduced *in situ* with LiAlH₄ or NaAl₂(OCH₂CH₂OMe)₂

³) In a sluggish reaction, alkyl ethenyl ethers and dibutyl phosphorazidate gave low yields of diazomethane [10].

⁴) The position of the double bond in the triazene derivatives was not established.

⁵) The formation of 1,3-disubstituted triazenes in the reaction of organic azides and *Grignard* or lithium compounds is well known [11].

to give the aromatic amines. When the reaction mixture was treated with an aqueous NH₄Cl solution instead of the hydride reagent, intermediate G was trapped as the triazene 8 which was isolated in good yield. Reduction of 8 with hydrides or decomposition under alkaline or acidic conditions again yielded the aromatic amine. The proposed mechanism for the hydride reduction [12] is shown in *Scheme 5*, and the hydrolytic decomposition may proceed in an analogous way to that depicted in *Scheme 3*.

Financial support of this work by the Swiss National Science Foundation and F. Hoffmann-La Roche AG, Basel, is gratefully acknowledged. J. M. V. thanks the Prof. Hans E. Schmid-Stiftung for a scholarship. Our thanks are also due to Mr. H. Frohofer for elemental analysis and IR spectra, Mr. T. Plüss for NMR spectra, and Dr. A. Lorenzi for mass spectra.

Experimental Part

General. See [14]. Unless otherwise stated, IR spectra in CHCl₃, ¹H- (300 MHz) and ¹³C-NMR (50,4 MHz) in CDCl₃. CI-MS: with 2-methylpropane or NH₃ as carrier gas.

General Procedure. To a soln. of 3 mmol of carboxamide 3 in 6 ml of dry THF, 1.1 equiv. of LDA (1.5M in cyclohexane) were added at -78° under Ar. After stirring the mixture for 1 h, 1.1 equiv. of DPPA were added slowly. The mixture was stirred at -78° for 5 min, and then a soln. of 2 equiv. of (Boc)₂O in 3 ml of dry THF was added at once. The mixture was further stirred for 6 h, raising the temp. from -78° to r.t. After evaporation the residue was purified by chromatography (SiO₂, hexane/AcOEt).

2-{/(tert-Butoxy)carbonyl]amino}-N-methyl-2, N-diphenylacetamide (Boc-Phe-N(Me)Ph; **5a**): 815 mg (80%). Colorless solid. M.p. 102–103°. IR: 3430m, 1705s, 1655s, 1595m, 1490s, 1455m, 1425w, 1390s, 1370m, 1315w, 1300w, 1250m, 1165s, 1120m, 1075w, 1060m, 1025w, 1015w, 1000w, 965w, 950w, 890w, 875w, 840w, 820w, 700s, 660w. ¹H-NMR: 7.4–7.1 (m, 7 arom. H); 6.95–6.9 (m, 3 arom. H); 5.84 (d, J = 8, NH); 5.25 (d, J = 8, H–C(2)); 3.26 (s, MeN); 1.39 (s, Me₃C). ¹³C-NMR: 170.2, 154.6 (2s, 2 C=O); 142.0, 137.7 (2s, 2 arom. C); 129.4, 128.2, 128.0, 127.8, 127.7, 127.5 (6d, 10 arom. CH); 79.3 (s, Me₃C); 55.5 (d, C(2)); 37.8 (q, MeN); 28.2 (q, Me₃C). CI-MS: 341 (100, [M + 1]⁺).

 $2 - \{ / (\text{tert-Butoxy}) \text{ carbonyl } \text{ Jamino} \} - \text{N-methyl-N-phenyl propanamide (5b): 617 mg (74%). Colorless powder. M.p. 96–98°. IR: 3425$ *m*, 1705*s*, 1645*s*, 1590*m*, 1500*s*, 1490*s*, 1450*m*1420*m*, 1390*m*, 1365*m*, 1330*w*, 1300*w*, 1245*m*, 1165*s*, 1120*m*, 1090*m*, 1060*m*, 1025*m*, 1000*w*, 915*w*, 890*w*, 855*m*, 695*s*, 660*w*. ¹H-NMR: 7.45–7.35 (*m*, 3 arom. H); 7.3–7.2 (*m*, 2 arom. H); 5.29 (*d*,*J*= 7.5, NH); 4.35–4.3 (*m*, H–C(2)); 3.27 (*s*, MeN); 1.41 (*s*, Me₃C); 1.10 (*d*,*J*= 7, Me). ¹³C-NMR: 172.9, 154.6 (2*s*, 2 C=O); 142.5 (*s*, 1 arom. C); 129.7, 127.9, 127.2 (3*d*, 5 arom. CH); 78.9 (*s*, Me₃C); 46.6 (*d*, C(2)); 37.5 (*q*, MeN); 28.1 (*q*, Me₃C); 18.7 (*q*, Me). CI-MS: 279 (100, [*M*+ 1]⁺).

 $2 - \{ (\text{tert-}Butoxy) carbonyl \} \text{amino} \} - \text{N-methyl-} \text{N-phenylbutanamide} (5c): 665 mg (76%). Colorless crystals. M.p. 98-100°. IR: 3425m, 1705s, 1645s, 1590m, 1500s, 1490s, 1460m, 1420m, 1390m, 1365m, 1330w, 1295m, 1275m, 1245m, 1160s, 1120m, 1070m, 1050m, 1020m, 1005w, 985w, 960m, 900w, 855w, 825w, 695s, 660w. ¹H-NMR: 7.45-7.3 (m, 3 arom. H); 7.25-7.15 (m, 2 arom. H); 5.22 (d, <math>J = 7.5$, NH); 4.3-4.25 (m, H-C(2)); 3.28 (s, MeN); 1.65-1.5 (m, MeCH₂); 1.42 (s, Me₃C); 0.73 (t, J = 7.5, MeCH₂). ¹³C-NMR: 172.2, 154.5 (2s, 2 C=O); 142.6 (s, 1 arom. C); 129.6, 127.8, 127.2 (3d, 5 arom. CH); 78.9 (s, Me₃C); 51.7 (d, C(2)); 37.4 (q, MeN); 28.1 (q, Me₃C); 26.1 (t, MeCH₂); 9.4 (q, MeCH₂). CI-MS: 293 (100, $[M + 1]^+$).

 α -{[(tert-Butoxy)carbonyl]amino}-N-methyl-N-phenylthiophene-2-acetamide (5a): 725 mg (70%). Yellowish crystals. M.p. 104–106°. IR: 3420m, 1705s, 1655s, 1590m, 1490s, 1450m, 1420m, 1390m, 1365m, 1315w, 1295w, 1260m, 1245m, 1160s, 1120m, 1070w, 1060m, 1020m, 1010w, 990w, 940w, 870w, 850w, 835w, 695s, 660w. ¹H-NMR: 7.45–7.4 (m, 3 arom. H); 7.35–7.25 (d-artig, 1 arom. H); 7.2–7.0 (m, 2 arom. H); 6.85–6.8 (t-artig, 1 arom. H); 6.7–6.65 (d-artig, 1 arom. H); 5.74 (d, J = 8, NH); 5.53 (d, J = 8, H–C(2)); 3.30 (s, MeN); 1.40 (s, Me₃C). ¹³C-NMR: 169.7, 154.5 (2s, 2 C=O); 142.1, 140.3 (2s, 2 arom. C); 129.6, 128.2, 127.5, 126.4, 125.6 (5d, 8 arom. CH); 79.7 (s, Me₃C); 50.6 (d, C(2)); 37.9 (q, MeN); 28.3 (q, Me₃C). CI-MS: 347 (100, $[M + 1]^+$).

Crystal Structure Determination of 5d (see Table and Figs. 1 and 2)⁶). The intensities were collected on a Rigaku-AFC5R diffractometer in the ω -2 θ -scan mode using graphite-monochromated MoK_x radiation ($\lambda = 0.71069$ Å) and a 12-kW rotating anode generator. The intensities were corrected for Lorentz and polarization effects and an absorption correction was applied using DIFABS [15]. Data collection and refinement parameters

⁶) Atomic coordinates, bond lengths, and bond angles were deposited with the *Cambridge Crystallographic Data Centre*, 12 Union Road, Cambridge CB2 1EZ, England.

	5d		5d
Crystallized from	МеОН	Space group	<u>P1</u>
Empirical formula	$C_{18}H_{22}N_2O_3S$	Z	2
Formula weight	346.44	$D_{\rm calc} [{ m g \ cm^{-3}}]$	1.249
Crystal color, habit	colorless, prism	Absorption coefficient	0.1840
Crystal temp. [K]	173 (1)	$\mu(MoK_{\gamma})$ [mm ⁻¹]	
Crystal dimensions [mm]	$0.30 \times 0.33 \times 0.40$	Absorption correction min, max	0.794, 1.120
Crystal system	triclinic	2θ (max) [°]	60
Lattice parameters		Total reflections measured	5629
Reflections for unit cell determination	25	Symmetry-independent reflections	5360
2θ range [°]	$39 < 2\theta < 40$	Reflections observed $(I > 3\sigma(I))$	4084
a [Å]	10.607 (4)	Variables	306
b [Å]	10.976 (4)	Final R	0.0420
c [Å]	8.218 (2)	R_w^{a})	0.0445
α [°]	100.86 (2)	Weights	$1/w = \sigma^2(F_0) + (0.005F_0)^2$
β [°]	95.58 (2)	Goodness of fit s	2.445
7 [°]	98.74 (3)	Final $\Delta_{\rm max}/\sigma$	0.0004
V[Å ³]	920.9 (5)	$\Delta \rho$ (max, min) [e Å ⁻³]	0.28, -0.33

Table. Crystallographic Data for Compound 5d

Fig. 2. Crystal packing of 5d

are listed in the *Table*, views of the molecule and crystal packing are shown in *Figs. 1* and 2. The structure was solved by direct methods using SHELXS86 [16], which revealed the positions of all non-H-atoms. The non-H-atoms were refined anisotropically. All of the H-atoms were located in a difference electron density map and were refined isotropically. All refinements were carried out on *F* using full-matrix least-squares procedures. A correction for secondary extinction was applied (coefficent $6.56 \cdot 10^{-7}$). Neutral atom scattering factors for non-H-atoms were taken from [17a] and the scattering factors for H-atoms from [18]. Anomalous dispersion effects were included in F_{calc} [19]; the values for f' and f'' were those of [17b]. All calculations were performed using the TEXSAN crystallographic software package [20].

The NH group of each molecule acts as a donor for an intermolecular H-bond. The corresponding acceptor atom is the amide O-atom of a neighboring molecule, which is related to the first one by a centre of inversion. The H-bonding, therefore, links the molecules into dimers (*Fig. 2*).

REFERENCES

- T. Shioiri, K. Ninomiya, S. Yamada, J. Am. Chem. Soc. 1972, 94, 6203; T. Shioiri, S. Yamada, Chem. Pharm. Bull. 1974, 22, 849, 855, 859; S. Yamada, N. Ikota, T. Shioiri, S. Tachibana, J. Am. Chem. Soc. 1975, 97, 7174.
- B. Lal, B. N. Pramanik, M. S. Manhas, A. K. Bose, *Tetrahedron Lett.* 1977, 1977; A. Matsuda, J. Yasuoka, T. Ueda, *Chem. Pharm. Bull.* 1989, 37, 1659.
- [3] a) K. Ninomiya, T. Shioiri, S. Yamada, *Chem. Pharm. Bull.* 1974, 22, 1398; b) B.L. Mylari, T.A. Beyer, T.W. Siegel, *J. Med. Chem.* 1991, 34, 1011.
- [4] J. M. Villalgordo, A. Enderli, A. Linden, H. Heimgartner, Helv. Chim. Acta 1995, 78, 1983.
- [5] C.K. Johnson, 'ORTEP II. Report ORNL-5138', Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
- [6] Y. Yokoyama, T. Shioiri, S. Yamada, Chem. Pharm. Bull. 1977, 25, 2423.
- [7] L. Qian, Z. Sun, T. Deffo, K. B. Mertes, Tetrahedron Lett. 1990, 31, 6469.
- [8] S. Yamada, Y. Hamada, K. Ninomiya, T. Shioiri, *Tetrahedron Lett.* 1976, 4749; T. Shioiri, N. Kawai, J. Org. Chem. 1978, 43, 2936.
- [9] S. Mori, I. Sakai, T. Aoyama, T. Shioiri, Chem. Pharm. Bull. 1982, 30, 3380; A. Sekiguchi, W. Ando, Chem. Lett. 1983, 871; W. Ando, H. Tanikawa, A. Sekiguchi, Tetrahedron Lett. 1983, 24, 4245.
- [10] K. D. Berlin, M. A. R. Khayat, Tetrahedron 1966, 22, 975.
- [11] T. Sheradsky, in 'The Chemistry of the Azido Group', Ed. S. Patai, Interscience Publ., New York, 1971, p. 331; A. Engel, in 'Houben-Weyl, Methoden der organischen Chemie', Ed. D. Klamann, Thieme Verlag, Stuttgart, 1990, Vol. E16a, p. 1182.
- [12] S. Mori, T. Aoyama, T. Shioiri, Tetrahedron Lett. 1984, 25, 429; Chem. Pharm. Bull. 1986, 34, 1524.
- [13] S. Mori, T. Aoyama, T. Shioiri, Tetrahedron Lett. 1986, 27, 6111.
- [14] J. M. Villalgordo, B. R. Vincent, H. Heimgartner, Helv. Chim. Acta 1990, 73, 959.
- [15] N. Walker, D. Stuart, Acta Crystallogr., Sect. A 1983, 39, 158.
- [16] G. M. Sheldrick, 'SHELXS86', Acta Crystallogr., Sect. A 1990, 46, 467.
- [17] a) D.T. Cromer, J.T. Waber, in 'International Tables for X-Ray Crystallography', Eds. J.A. Ibers and W.C. Hamilton, The Kynoch Press, Birmingham, 1974, Vol. IV, Table 2.2A, pp. 71–98; b) D.T. Cromer, J.A. Ibers, *ibid.* Table 2.3.1, p. 149.
- [18] R. F. Stewart, E. R. Davidson, W. T. Simpson, J. Chem. Phys. 1965, 42, 3175.
- [19] J.A. Ibers, W.C. Hamilton, Acta Crystallogr. 1964, 17, 781.
- [20] 'TEXSAN Single Crystal Structure Analysis Software, Version 5.0', Molecular Structure Corporation, The Woodlands, Texas, 1989.